438 research outputs found

    Physically-based Assessment of Hurricane Surge Threat under Climate Change

    Get PDF
    Storm surges are responsible for much of the damage and loss of life associated with landfalling hurricanes. Understanding how global warming will affect hurricane surges thus holds great interest. As general circulation models (GCMs) cannot simulate hurricane surges directly, we couple a GCM-driven hurricane model with hydrodynamic models to simulate large numbers of synthetic surge events under projected climates and assess surge threat, as an example, for New York City (NYC). Struck by many intense hurricanes in recorded history and prehistory, NYC is highly vulnerable to storm surges. We show that the change of storm climatology will probably increase the surge risk for NYC; results based on two GCMs show the distribution of surge levels shifting to higher values by a magnitude comparable to the projected sea-level rise (SLR). The combined effects of storm climatology change and a 1 m SLR may cause the present NYC 100-yr surge flooding to occur every 3–20 yr and the present 500-yr flooding to occur every 25–240 yr by the end of the century.United States. National Oceanic and Atmospheric Administration (Postdoctoral Fellowship Program)National Science Foundation (U.S.

    Convective self-aggregation in numerical simulations: a review

    Get PDF
    Organized convection in the Tropics occurs across a range of spatial and temporal scales and strongly influences cloud cover and humidity. One mode of organization found is “self-aggregation”, in which moist convection spontaneously organizes into one or several isolated clusters despite spatially homogeneous boundary conditions and forcing. Self-aggregation is driven by interactions between clouds, moisture, radiation, surface fluxes, and circulation, and occurs in a wide variety of idealized simulations of radiative-convective equilibrium. Here we provide a review of convective self-aggregation in numerical simulations, including its character, causes, and effects. We describe the evolution of self-aggregation including its time and length scales and the physical mechanisms leading to its triggering and maintenance, and we also discuss possible links to climate and climate change

    Thermodynamic efficiencies of an idealized global climate model

    Full text link
    We employ the heat engine framework to derive a simple method for assessing the strength of irreversible processes in global climate models (GCMs). Using the explicit energy budget of an idealized GCM, we show that the thermodynamic efficiencies based on the net heating rate and frictional work rate provides a measure of physical and numerical irreversibilities present in either open (e.g., the Hadley circulation) or closed (e.g., the general circulation) circulations. In addition, we show that the Carnot efficiency is useful for assessing the maximum possible efficiency attained by closed circulations. Comparison of the work-based efficiency with that based on the net heating rate and the Carnot efficiency provides a gauge of how close to reversible and ideal the circulations are. A series of experiments with the idealized GCM demonstrate the usefulness of our method and show the sensitivity of an essentially reversible model to changes in physical and numerical parameters such as rotation period and resolution.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47143/1/382_2005_Article_71.pd

    Using a New Odour-Baited Device to Explore Options for Luring and Killing Outdoor-Biting Malaria Vectors: A Report on Design and Field Evaluation of the Mosquito Landing Box.

    Get PDF
    Mosquitoes that bite people outdoors can sustain malaria transmission even where effective indoor interventions such as bednets or indoor residual spraying are already widely used. Outdoor tools may therefore complement current indoor measures and improve control. We developed and evaluated a prototype mosquito control device, the 'Mosquito Landing Box' (MLB), which is baited with human odours and treated with mosquitocidal agents. The findings are used to explore technical options and challenges relevant to luring and killing outdoor-biting malaria vectors in endemic settings. Field experiments were conducted in Tanzania to assess if wild host-seeking mosquitoes 1) visited the MLBs, 2) stayed long or left shortly after arrival at the device, 3) visited the devices at times when humans were also outdoors, and 4) could be killed by contaminants applied on the devices. Odours suctioned from volunteer-occupied tents were also evaluated as a potential low-cost bait, by comparing baited and unbaited MLBs. There were significantly more Anopheles arabiensis, An. funestus, Culex and Mansonia mosquitoes visiting baited MLB than unbaited controls (P<=0.028). Increasing sampling frequency from every 120 min to 60 and 30 min led to an increase in vector catches of up to 3.6 fold (P<=0.002), indicating that many mosquitoes visited the device but left shortly afterwards. Outdoor host-seeking activity of malaria vectors peaked between 7:30 and 10:30pm, and between 4:30 and 6:00am, matching durations when locals were also outdoors. Maximum mortality of mosquitoes visiting MLBs sprayed or painted with formulations of candidate mosquitocidal agent (pirimiphos-methyl) was 51%. Odours from volunteer occupied tents attracted significantly more mosquitoes to MLBs than controls (P<0.001). While odour-baited devices such as the MLBs clearly have potential against outdoor-biting mosquitoes in communities where LLINs are used, candidate contaminants must be those that are effective at ultra-low doses even after short contact periods, since important vector species such as An. arabiensis make only brief visits to such devices. Natural human odours suctioned from occupied dwellings could constitute affordable sources of attractants to supplement odour baits for the devices. The killing agents used should be environmentally safe, long lasting, and have different modes of action (other than pyrethroids as used on LLINs), to curb the risk of physiological insecticide resistance

    Family members’ experiences of “wait and see” as a communication strategy in end-of-life decisions

    Get PDF
    The aim of this study is to examine family members’ experiences of end-of-life decision-making processes in Norwegian intensive care units (ICUs) to ascertain the degree to which they felt included in the decision-making process and whether they received necessary information. Were they asked about the patient’s preferences, and how did they view their role as family members in the decision-making process? A constructivist interpretive approach to the grounded theory method of qualitative research was employed with interviews of 27 bereaved family members of former ICU patients 3–12 months after the patient’s death. The core finding is that relatives want a more active role in end-of-life decision-making in order to communicate the patient’s wishes. However, many consider their role to be unclear, and few study participants experienced shared decision-making. The clinician’s expression “wait and see” hides and delays the communication of honest and clear information. When physicians finally address their decision, there is no time for family participation. Our results also indicate that nurses should be more involved in family–physician communication. Families are uncertain whether or how they can participate in the decision-making process. They need unambiguous communication and honest information to be able to take part in the decision-making process. We suggest that clinicians in Norwegian ICUs need more training in the knowledge and skills of effective communication with families of dying patients

    Ecological Implications of Extreme Events: Footprints of the 2010 Earthquake along the Chilean Coast

    Get PDF
    Deciphering ecological effects of major catastrophic events such as earthquakes, tsunamis, volcanic eruptions, storms and fires, requires rapid interdisciplinary efforts often hampered by a lack of pre-event data. Using results of intertidal surveys conducted shortly before and immediately after Chile's 2010 Mw 8.8 earthquake along the entire rupture zone (ca. 34–38°S), we provide the first quantification of earthquake and tsunami effects on sandy beach ecosystems. Our study incorporated anthropogenic coastal development as a key design factor. Ecological responses of beach ecosystems were strongly affected by the magnitude of land-level change. Subsidence along the northern rupture segment combined with tsunami-associated disturbance and drowned beaches. In contrast, along the co-seismically uplifted southern rupture, beaches widened and flattened increasing habitat availability. Post-event changes in abundance and distribution of mobile intertidal invertebrates were not uniform, varying with land-level change, tsunami height and coastal development. On beaches where subsidence occurred, intertidal zones and their associated species disappeared. On some beaches, uplift of rocky sub-tidal substrate eliminated low intertidal sand beach habitat for ecologically important species. On others, unexpected interactions of uplift with man-made coastal armouring included restoration of upper and mid-intertidal habitat seaward of armouring followed by rapid colonization of mobile crustaceans typical of these zones formerly excluded by constraints imposed by the armouring structures. Responses of coastal ecosystems to major earthquakes appear to vary strongly with land-level change, the mobility of the biota and shore type. Our results show that interactions of extreme events with human-altered shorelines can produce surprising ecological outcomes, and suggest these complex responses to landscape alteration can leave lasting footprints in coastal ecosystems
    • …
    corecore